MATH3310 Tutorial 10 Questions

1. We consider a modified power iteration. For any $\mathbf{x} = (x_1, x_2, ..., x_n)^T \in \mathbb{C}^n$, we define: $g(\mathbf{x}) = x_l$, where l is the smallest index such that $|x_l| = ||\mathbf{x}||_{\infty}$. Let $A \in M_{n \times n}(\mathbb{C})$ whose eigenvalues are given by $\lambda_1, \lambda_2, ... \lambda_n$ such that

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n| > 0.$$

Suppose \mathbf{u}_i is the eigenvector of A corresponding to the eigenvalue λ_i for i = 1, 2, ..., n. Let $\mathbf{x}_0 = \sum_{i=1}^n \mathbf{u}_i$. The modified power iteration can be written as:

$$\mathbf{x}_{k+1} = \frac{A\mathbf{x}_k}{g(A\mathbf{x}_k)}.$$

- (a) With the above modified power iteration, prove that $\lim_{k\to\infty} g(A\mathbf{x}_k) = \lambda_1$. Please explain your answer with details.
- (b) The modified inverse power iteration can be formulated as

$$\mathbf{x}_{k+1} = \frac{A^{-1}\mathbf{x}_k}{g(A^{-1}\mathbf{x}_k)}.$$

With the same \mathbf{x}_0 defined as above, prove that $\lim_{k\to\infty} g(A\mathbf{x}_k) = \lambda_n$.

2. Let A be a non-singular $n \times n$ real matrix. We apply the QR method on A to obtain a sequence of matrices $\{A^{(j)}\}_{j=0}^{\infty}$, which satisfies:

$$A^{(0)} = A;$$

 $A^{(j+1)} = R^{(j)}Q^{(j)}$ for $j = 0, 1, 2, ...,$

where $A^{(j)} = Q^{(j)}R^{(j)}$ is the QR factorization of $A^{(j)}$. Let k be an integer greater than 2020. Given that the QR factorizations of A^{k-1} and $A^{(k-1)}$ are given by

$$A^{k-1} = Q_1 R_1$$
 and $A^{(k-1)} = Q_2 R_2$.

In this question, all QR factorization is obtained in such a way that the diagonal entries of the upper triangular matrix are postive.

- (a) Express A in terms of Q_1 , Q_2 , R_1 and R_2 only. Please explain your answer with details.
- (b) Starting from \mathbf{x}_0 , we apply the Power's method on A as follows:

$$\mathbf{x}_{j+1} = \frac{A\mathbf{x}_j}{||A\mathbf{x}_j||_{\infty}} \text{ for } j = 0, 1, 2, \dots$$

Write \mathbf{x}_k in terms of \mathbf{x}_0 , Q_1 , Q_2 , R_1 and R_2 only (without A and k). Please explain your answer with details.

3. Consider the gradient descent algorithm to solve the linear system $A\mathbf{x} = \mathbf{b}$, where A is a $n \times n$ symmetric positive definite real matrix, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$. Define the convex quadratic objective function $f(\mathbf{x})$ as follows:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x}.$$

The gradient descent algorithm can be written as:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda_k \mathbf{d}_k$$
, where $\mathbf{d}_k = \nabla f(\mathbf{x}_k)$ and $\lambda_k = \frac{\mathbf{d}_k^T \mathbf{d}_k}{\mathbf{d}_k^T A \mathbf{d}_k}$.

Define: $||\mathbf{x}||_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$ and $||\mathbf{x}||_A = \sqrt{\mathbf{x}^T A \mathbf{x}}$.

Denote the eigenvalues of A by $0 < \mu_1 \le \mu_2 \le ... \le \mu_n$. For any nonzero $\mathbf{x} \in \mathbb{R}^n$, we are given the following inequality:

$$\frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \cdot \frac{\mathbf{x}^T A^{-1} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \le \frac{(\mu_1 + \mu_n)^2}{4\mu_1 \mu_n}$$

Introduce the error function as $E(\mathbf{x}) = ||\mathbf{x} - \mathbf{x}^*||_A^2$, where \mathbf{x}^* is the solution of $A\mathbf{x} = \mathbf{b}$. Define $\mathbf{e}_k = \mathbf{x}_k - \mathbf{x}^*$.

- (a) Prove that $\mathbf{e}_{k+1} = \mathbf{e}_k \lambda_k \mathbf{d}_k$ and $\mathbf{e}_k = A^{-1} \mathbf{d}_k$.
- (b) Prove that:

$$||\mathbf{e}_{k+1}||_A \le \left(\frac{c(A)-1}{c(A)+1}\right)||\mathbf{e}_k||_A.$$

where $c(A) = \frac{\mu_n}{\mu_1}$ is the condition number of A.